If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x+10.5=0
a = 2; b = -10; c = +10.5;
Δ = b2-4ac
Δ = -102-4·2·10.5
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4}{2*2}=\frac{6}{4} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4}{2*2}=\frac{14}{4} =3+1/2 $
| 6x+2x-11+71-12x=0 | | -194=-7x-82 | | -17-4x=19 | | 5s-23=82 | | 6/13=x/91 | | 92=40-4x | | 27+64+97+x=180 | | 27+97+x+64=180 | | 4x+47=111 | | a÷6=15 | | 64+26+97+x=180 | | 219=66-9x | | 97+x+26+64=180 | | x+1/5=55/20x | | .96=1.29^x | | 5x^2+5x+3=12 | | 6k+10.5=3k+12k=0.5k=2k=7.3k=9 | | 0.5f=1 | | 5x7=-4 | | 2x+1/3x-4=2.5 | | 5(x-2)/3=+-x+2 | | x/8=6.26 | | 24x-2=6 | | x²-2=9 | | 7(w-1)=5w-15 | | 7x+22=2.5x+1 | | -4+4y=-28 | | x^2-27x+520=0 | | -8w+6(w+5)=28 | | r+3=2r+9 | | (6+z)(2z=7)=0 | | 11-2x=21 |